3.1.96 \(\int \frac {\text {sech}^2(c+d x)}{(a+b \text {sech}^2(c+d x))^3} \, dx\) [96]

Optimal. Leaf size=108 \[ \frac {3 \tanh ^{-1}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{8 \sqrt {b} (a+b)^{5/2} d}+\frac {\tanh (c+d x)}{4 (a+b) d \left (a+b-b \tanh ^2(c+d x)\right )^2}+\frac {3 \tanh (c+d x)}{8 (a+b)^2 d \left (a+b-b \tanh ^2(c+d x)\right )} \]

[Out]

3/8*arctanh(b^(1/2)*tanh(d*x+c)/(a+b)^(1/2))/(a+b)^(5/2)/d/b^(1/2)+1/4*tanh(d*x+c)/(a+b)/d/(a+b-b*tanh(d*x+c)^
2)^2+3/8*tanh(d*x+c)/(a+b)^2/d/(a+b-b*tanh(d*x+c)^2)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 108, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {4231, 205, 214} \begin {gather*} \frac {3 \tanh ^{-1}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{8 \sqrt {b} d (a+b)^{5/2}}+\frac {3 \tanh (c+d x)}{8 d (a+b)^2 \left (a-b \tanh ^2(c+d x)+b\right )}+\frac {\tanh (c+d x)}{4 d (a+b) \left (a-b \tanh ^2(c+d x)+b\right )^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sech[c + d*x]^2/(a + b*Sech[c + d*x]^2)^3,x]

[Out]

(3*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(8*Sqrt[b]*(a + b)^(5/2)*d) + Tanh[c + d*x]/(4*(a + b)*d*(a +
 b - b*Tanh[c + d*x]^2)^2) + (3*Tanh[c + d*x])/(8*(a + b)^2*d*(a + b - b*Tanh[c + d*x]^2))

Rule 205

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Dist[(n*(p
 + 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (
IntegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[
p])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 4231

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rubi steps

\begin {align*} \int \frac {\text {sech}^2(c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx &=\frac {\text {Subst}\left (\int \frac {1}{\left (a+b-b x^2\right )^3} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac {\tanh (c+d x)}{4 (a+b) d \left (a+b-b \tanh ^2(c+d x)\right )^2}+\frac {3 \text {Subst}\left (\int \frac {1}{\left (a+b-b x^2\right )^2} \, dx,x,\tanh (c+d x)\right )}{4 (a+b) d}\\ &=\frac {\tanh (c+d x)}{4 (a+b) d \left (a+b-b \tanh ^2(c+d x)\right )^2}+\frac {3 \tanh (c+d x)}{8 (a+b)^2 d \left (a+b-b \tanh ^2(c+d x)\right )}+\frac {3 \text {Subst}\left (\int \frac {1}{a+b-b x^2} \, dx,x,\tanh (c+d x)\right )}{8 (a+b)^2 d}\\ &=\frac {3 \tanh ^{-1}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a+b}}\right )}{8 \sqrt {b} (a+b)^{5/2} d}+\frac {\tanh (c+d x)}{4 (a+b) d \left (a+b-b \tanh ^2(c+d x)\right )^2}+\frac {3 \tanh (c+d x)}{8 (a+b)^2 d \left (a+b-b \tanh ^2(c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(258\) vs. \(2(108)=216\).
time = 1.52, size = 258, normalized size = 2.39 \begin {gather*} \frac {(a+2 b+a \cosh (2 (c+d x))) \text {sech}^6(c+d x) \left (\frac {3 \tanh ^{-1}\left (\frac {\text {sech}(d x) (\cosh (2 c)-\sinh (2 c)) ((a+2 b) \sinh (d x)-a \sinh (2 c+d x))}{2 \sqrt {a+b} \sqrt {b (\cosh (c)-\sinh (c))^4}}\right ) (a+2 b+a \cosh (2 (c+d x)))^2 (\cosh (2 c)-\sinh (2 c))}{\sqrt {a+b} \sqrt {b (\cosh (c)-\sinh (c))^4}}+\frac {4 b (a+b) \text {sech}(2 c) ((a+2 b) \sinh (2 c)-a \sinh (2 d x))}{a^2}-\frac {(a+2 b+a \cosh (2 (c+d x))) \text {sech}(2 c) \left (\left (5 a^2+16 a b+8 b^2\right ) \sinh (2 c)-a (5 a+2 b) \sinh (2 d x)\right )}{a^2}\right )}{64 (a+b)^2 d \left (a+b \text {sech}^2(c+d x)\right )^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sech[c + d*x]^2/(a + b*Sech[c + d*x]^2)^3,x]

[Out]

((a + 2*b + a*Cosh[2*(c + d*x)])*Sech[c + d*x]^6*((3*ArcTanh[(Sech[d*x]*(Cosh[2*c] - Sinh[2*c])*((a + 2*b)*Sin
h[d*x] - a*Sinh[2*c + d*x]))/(2*Sqrt[a + b]*Sqrt[b*(Cosh[c] - Sinh[c])^4])]*(a + 2*b + a*Cosh[2*(c + d*x)])^2*
(Cosh[2*c] - Sinh[2*c]))/(Sqrt[a + b]*Sqrt[b*(Cosh[c] - Sinh[c])^4]) + (4*b*(a + b)*Sech[2*c]*((a + 2*b)*Sinh[
2*c] - a*Sinh[2*d*x]))/a^2 - ((a + 2*b + a*Cosh[2*(c + d*x)])*Sech[2*c]*((5*a^2 + 16*a*b + 8*b^2)*Sinh[2*c] -
a*(5*a + 2*b)*Sinh[2*d*x]))/a^2))/(64*(a + b)^2*d*(a + b*Sech[c + d*x]^2)^3)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(259\) vs. \(2(94)=188\).
time = 2.13, size = 260, normalized size = 2.41

method result size
derivativedivides \(\frac {-\frac {2 \left (-\frac {5 \left (\tanh ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 \left (a +b \right )}-\frac {3 \left (5 a +b \right ) \left (\tanh ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 \left (a +b \right )^{2}}-\frac {3 \left (5 a +b \right ) \left (\tanh ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 \left (a +b \right )^{2}}-\frac {5 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 \left (a +b \right )}\right )}{\left (a \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+b \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 a \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b \right )^{2}}-\frac {3 \left (-\frac {\ln \left (\sqrt {a +b}\, \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}+\frac {\ln \left (\sqrt {a +b}\, \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}\right )}{4 \left (a^{2}+2 a b +b^{2}\right )}}{d}\) \(260\)
default \(\frac {-\frac {2 \left (-\frac {5 \left (\tanh ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 \left (a +b \right )}-\frac {3 \left (5 a +b \right ) \left (\tanh ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 \left (a +b \right )^{2}}-\frac {3 \left (5 a +b \right ) \left (\tanh ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 \left (a +b \right )^{2}}-\frac {5 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 \left (a +b \right )}\right )}{\left (a \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+b \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 a \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b \right )^{2}}-\frac {3 \left (-\frac {\ln \left (\sqrt {a +b}\, \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}+\frac {\ln \left (\sqrt {a +b}\, \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b}+\sqrt {a +b}\right )}{4 \sqrt {b}\, \sqrt {a +b}}\right )}{4 \left (a^{2}+2 a b +b^{2}\right )}}{d}\) \(260\)
risch \(-\frac {5 a^{3} {\mathrm e}^{6 d x +6 c}+16 a^{2} b \,{\mathrm e}^{6 d x +6 c}+8 a \,b^{2} {\mathrm e}^{6 d x +6 c}+15 a^{3} {\mathrm e}^{4 d x +4 c}+46 a^{2} b \,{\mathrm e}^{4 d x +4 c}+56 a \,b^{2} {\mathrm e}^{4 d x +4 c}+16 b^{3} {\mathrm e}^{4 d x +4 c}+15 a^{3} {\mathrm e}^{2 d x +2 c}+32 a^{2} b \,{\mathrm e}^{2 d x +2 c}+8 a \,b^{2} {\mathrm e}^{2 d x +2 c}+5 a^{3}+2 a^{2} b}{4 a^{2} d \left (a +b \right )^{2} \left (a \,{\mathrm e}^{4 d x +4 c}+2 a \,{\mathrm e}^{2 d x +2 c}+4 b \,{\mathrm e}^{2 d x +2 c}+a \right )^{2}}+\frac {3 \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {a b +b^{2}}+2 b \sqrt {a b +b^{2}}-2 a b -2 b^{2}}{a \sqrt {a b +b^{2}}}\right )}{16 \sqrt {a b +b^{2}}\, \left (a +b \right )^{2} d}-\frac {3 \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {a b +b^{2}}+2 b \sqrt {a b +b^{2}}+2 a b +2 b^{2}}{a \sqrt {a b +b^{2}}}\right )}{16 \sqrt {a b +b^{2}}\, \left (a +b \right )^{2} d}\) \(364\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)^2/(a+b*sech(d*x+c)^2)^3,x,method=_RETURNVERBOSE)

[Out]

1/d*(-2*(-5/8/(a+b)*tanh(1/2*d*x+1/2*c)^7-3/8*(5*a+b)/(a+b)^2*tanh(1/2*d*x+1/2*c)^5-3/8*(5*a+b)/(a+b)^2*tanh(1
/2*d*x+1/2*c)^3-5/8/(a+b)*tanh(1/2*d*x+1/2*c))/(a*tanh(1/2*d*x+1/2*c)^4+b*tanh(1/2*d*x+1/2*c)^4+2*a*tanh(1/2*d
*x+1/2*c)^2-2*b*tanh(1/2*d*x+1/2*c)^2+a+b)^2-3/4/(a^2+2*a*b+b^2)*(-1/4/b^(1/2)/(a+b)^(1/2)*ln((a+b)^(1/2)*tanh
(1/2*d*x+1/2*c)^2+2*tanh(1/2*d*x+1/2*c)*b^(1/2)+(a+b)^(1/2))+1/4/b^(1/2)/(a+b)^(1/2)*ln((a+b)^(1/2)*tanh(1/2*d
*x+1/2*c)^2-2*tanh(1/2*d*x+1/2*c)*b^(1/2)+(a+b)^(1/2))))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 353 vs. \(2 (100) = 200\).
time = 0.53, size = 353, normalized size = 3.27 \begin {gather*} \frac {5 \, a^{3} + 2 \, a^{2} b + {\left (15 \, a^{3} + 32 \, a^{2} b + 8 \, a b^{2}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (15 \, a^{3} + 46 \, a^{2} b + 56 \, a b^{2} + 16 \, b^{3}\right )} e^{\left (-4 \, d x - 4 \, c\right )} + {\left (5 \, a^{3} + 16 \, a^{2} b + 8 \, a b^{2}\right )} e^{\left (-6 \, d x - 6 \, c\right )}}{4 \, {\left (a^{6} + 2 \, a^{5} b + a^{4} b^{2} + 4 \, {\left (a^{6} + 4 \, a^{5} b + 5 \, a^{4} b^{2} + 2 \, a^{3} b^{3}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + 2 \, {\left (3 \, a^{6} + 14 \, a^{5} b + 27 \, a^{4} b^{2} + 24 \, a^{3} b^{3} + 8 \, a^{2} b^{4}\right )} e^{\left (-4 \, d x - 4 \, c\right )} + 4 \, {\left (a^{6} + 4 \, a^{5} b + 5 \, a^{4} b^{2} + 2 \, a^{3} b^{3}\right )} e^{\left (-6 \, d x - 6 \, c\right )} + {\left (a^{6} + 2 \, a^{5} b + a^{4} b^{2}\right )} e^{\left (-8 \, d x - 8 \, c\right )}\right )} d} - \frac {3 \, \log \left (\frac {a e^{\left (-2 \, d x - 2 \, c\right )} + a + 2 \, b - 2 \, \sqrt {{\left (a + b\right )} b}}{a e^{\left (-2 \, d x - 2 \, c\right )} + a + 2 \, b + 2 \, \sqrt {{\left (a + b\right )} b}}\right )}{16 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {{\left (a + b\right )} b} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^2/(a+b*sech(d*x+c)^2)^3,x, algorithm="maxima")

[Out]

1/4*(5*a^3 + 2*a^2*b + (15*a^3 + 32*a^2*b + 8*a*b^2)*e^(-2*d*x - 2*c) + (15*a^3 + 46*a^2*b + 56*a*b^2 + 16*b^3
)*e^(-4*d*x - 4*c) + (5*a^3 + 16*a^2*b + 8*a*b^2)*e^(-6*d*x - 6*c))/((a^6 + 2*a^5*b + a^4*b^2 + 4*(a^6 + 4*a^5
*b + 5*a^4*b^2 + 2*a^3*b^3)*e^(-2*d*x - 2*c) + 2*(3*a^6 + 14*a^5*b + 27*a^4*b^2 + 24*a^3*b^3 + 8*a^2*b^4)*e^(-
4*d*x - 4*c) + 4*(a^6 + 4*a^5*b + 5*a^4*b^2 + 2*a^3*b^3)*e^(-6*d*x - 6*c) + (a^6 + 2*a^5*b + a^4*b^2)*e^(-8*d*
x - 8*c))*d) - 3/16*log((a*e^(-2*d*x - 2*c) + a + 2*b - 2*sqrt((a + b)*b))/(a*e^(-2*d*x - 2*c) + a + 2*b + 2*s
qrt((a + b)*b)))/((a^2 + 2*a*b + b^2)*sqrt((a + b)*b)*d)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 2434 vs. \(2 (100) = 200\).
time = 0.40, size = 5109, normalized size = 47.31 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^2/(a+b*sech(d*x+c)^2)^3,x, algorithm="fricas")

[Out]

[-1/16*(4*(5*a^4*b + 21*a^3*b^2 + 24*a^2*b^3 + 8*a*b^4)*cosh(d*x + c)^6 + 24*(5*a^4*b + 21*a^3*b^2 + 24*a^2*b^
3 + 8*a*b^4)*cosh(d*x + c)*sinh(d*x + c)^5 + 4*(5*a^4*b + 21*a^3*b^2 + 24*a^2*b^3 + 8*a*b^4)*sinh(d*x + c)^6 +
 20*a^4*b + 28*a^3*b^2 + 8*a^2*b^3 + 4*(15*a^4*b + 61*a^3*b^2 + 102*a^2*b^3 + 72*a*b^4 + 16*b^5)*cosh(d*x + c)
^4 + 4*(15*a^4*b + 61*a^3*b^2 + 102*a^2*b^3 + 72*a*b^4 + 16*b^5 + 15*(5*a^4*b + 21*a^3*b^2 + 24*a^2*b^3 + 8*a*
b^4)*cosh(d*x + c)^2)*sinh(d*x + c)^4 + 16*(5*(5*a^4*b + 21*a^3*b^2 + 24*a^2*b^3 + 8*a*b^4)*cosh(d*x + c)^3 +
(15*a^4*b + 61*a^3*b^2 + 102*a^2*b^3 + 72*a*b^4 + 16*b^5)*cosh(d*x + c))*sinh(d*x + c)^3 + 4*(15*a^4*b + 47*a^
3*b^2 + 40*a^2*b^3 + 8*a*b^4)*cosh(d*x + c)^2 + 4*(15*a^4*b + 47*a^3*b^2 + 40*a^2*b^3 + 8*a*b^4 + 15*(5*a^4*b
+ 21*a^3*b^2 + 24*a^2*b^3 + 8*a*b^4)*cosh(d*x + c)^4 + 6*(15*a^4*b + 61*a^3*b^2 + 102*a^2*b^3 + 72*a*b^4 + 16*
b^5)*cosh(d*x + c)^2)*sinh(d*x + c)^2 - 3*(a^4*cosh(d*x + c)^8 + 8*a^4*cosh(d*x + c)*sinh(d*x + c)^7 + a^4*sin
h(d*x + c)^8 + 4*(a^4 + 2*a^3*b)*cosh(d*x + c)^6 + 4*(7*a^4*cosh(d*x + c)^2 + a^4 + 2*a^3*b)*sinh(d*x + c)^6 +
 8*(7*a^4*cosh(d*x + c)^3 + 3*(a^4 + 2*a^3*b)*cosh(d*x + c))*sinh(d*x + c)^5 + 2*(3*a^4 + 8*a^3*b + 8*a^2*b^2)
*cosh(d*x + c)^4 + 2*(35*a^4*cosh(d*x + c)^4 + 3*a^4 + 8*a^3*b + 8*a^2*b^2 + 30*(a^4 + 2*a^3*b)*cosh(d*x + c)^
2)*sinh(d*x + c)^4 + a^4 + 8*(7*a^4*cosh(d*x + c)^5 + 10*(a^4 + 2*a^3*b)*cosh(d*x + c)^3 + (3*a^4 + 8*a^3*b +
8*a^2*b^2)*cosh(d*x + c))*sinh(d*x + c)^3 + 4*(a^4 + 2*a^3*b)*cosh(d*x + c)^2 + 4*(7*a^4*cosh(d*x + c)^6 + 15*
(a^4 + 2*a^3*b)*cosh(d*x + c)^4 + a^4 + 2*a^3*b + 3*(3*a^4 + 8*a^3*b + 8*a^2*b^2)*cosh(d*x + c)^2)*sinh(d*x +
c)^2 + 8*(a^4*cosh(d*x + c)^7 + 3*(a^4 + 2*a^3*b)*cosh(d*x + c)^5 + (3*a^4 + 8*a^3*b + 8*a^2*b^2)*cosh(d*x + c
)^3 + (a^4 + 2*a^3*b)*cosh(d*x + c))*sinh(d*x + c))*sqrt(a*b + b^2)*log((a^2*cosh(d*x + c)^4 + 4*a^2*cosh(d*x
+ c)*sinh(d*x + c)^3 + a^2*sinh(d*x + c)^4 + 2*(a^2 + 2*a*b)*cosh(d*x + c)^2 + 2*(3*a^2*cosh(d*x + c)^2 + a^2
+ 2*a*b)*sinh(d*x + c)^2 + a^2 + 8*a*b + 8*b^2 + 4*(a^2*cosh(d*x + c)^3 + (a^2 + 2*a*b)*cosh(d*x + c))*sinh(d*
x + c) - 4*(a*cosh(d*x + c)^2 + 2*a*cosh(d*x + c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a + 2*b)*sqrt(a*b + b^2)
)/(a*cosh(d*x + c)^4 + 4*a*cosh(d*x + c)*sinh(d*x + c)^3 + a*sinh(d*x + c)^4 + 2*(a + 2*b)*cosh(d*x + c)^2 + 2
*(3*a*cosh(d*x + c)^2 + a + 2*b)*sinh(d*x + c)^2 + 4*(a*cosh(d*x + c)^3 + (a + 2*b)*cosh(d*x + c))*sinh(d*x +
c) + a)) + 8*(3*(5*a^4*b + 21*a^3*b^2 + 24*a^2*b^3 + 8*a*b^4)*cosh(d*x + c)^5 + 2*(15*a^4*b + 61*a^3*b^2 + 102
*a^2*b^3 + 72*a*b^4 + 16*b^5)*cosh(d*x + c)^3 + (15*a^4*b + 47*a^3*b^2 + 40*a^2*b^3 + 8*a*b^4)*cosh(d*x + c))*
sinh(d*x + c))/((a^7*b + 3*a^6*b^2 + 3*a^5*b^3 + a^4*b^4)*d*cosh(d*x + c)^8 + 8*(a^7*b + 3*a^6*b^2 + 3*a^5*b^3
 + a^4*b^4)*d*cosh(d*x + c)*sinh(d*x + c)^7 + (a^7*b + 3*a^6*b^2 + 3*a^5*b^3 + a^4*b^4)*d*sinh(d*x + c)^8 + 4*
(a^7*b + 5*a^6*b^2 + 9*a^5*b^3 + 7*a^4*b^4 + 2*a^3*b^5)*d*cosh(d*x + c)^6 + 4*(7*(a^7*b + 3*a^6*b^2 + 3*a^5*b^
3 + a^4*b^4)*d*cosh(d*x + c)^2 + (a^7*b + 5*a^6*b^2 + 9*a^5*b^3 + 7*a^4*b^4 + 2*a^3*b^5)*d)*sinh(d*x + c)^6 +
2*(3*a^7*b + 17*a^6*b^2 + 41*a^5*b^3 + 51*a^4*b^4 + 32*a^3*b^5 + 8*a^2*b^6)*d*cosh(d*x + c)^4 + 8*(7*(a^7*b +
3*a^6*b^2 + 3*a^5*b^3 + a^4*b^4)*d*cosh(d*x + c)^3 + 3*(a^7*b + 5*a^6*b^2 + 9*a^5*b^3 + 7*a^4*b^4 + 2*a^3*b^5)
*d*cosh(d*x + c))*sinh(d*x + c)^5 + 2*(35*(a^7*b + 3*a^6*b^2 + 3*a^5*b^3 + a^4*b^4)*d*cosh(d*x + c)^4 + 30*(a^
7*b + 5*a^6*b^2 + 9*a^5*b^3 + 7*a^4*b^4 + 2*a^3*b^5)*d*cosh(d*x + c)^2 + (3*a^7*b + 17*a^6*b^2 + 41*a^5*b^3 +
51*a^4*b^4 + 32*a^3*b^5 + 8*a^2*b^6)*d)*sinh(d*x + c)^4 + 4*(a^7*b + 5*a^6*b^2 + 9*a^5*b^3 + 7*a^4*b^4 + 2*a^3
*b^5)*d*cosh(d*x + c)^2 + 8*(7*(a^7*b + 3*a^6*b^2 + 3*a^5*b^3 + a^4*b^4)*d*cosh(d*x + c)^5 + 10*(a^7*b + 5*a^6
*b^2 + 9*a^5*b^3 + 7*a^4*b^4 + 2*a^3*b^5)*d*cosh(d*x + c)^3 + (3*a^7*b + 17*a^6*b^2 + 41*a^5*b^3 + 51*a^4*b^4
+ 32*a^3*b^5 + 8*a^2*b^6)*d*cosh(d*x + c))*sinh(d*x + c)^3 + 4*(7*(a^7*b + 3*a^6*b^2 + 3*a^5*b^3 + a^4*b^4)*d*
cosh(d*x + c)^6 + 15*(a^7*b + 5*a^6*b^2 + 9*a^5*b^3 + 7*a^4*b^4 + 2*a^3*b^5)*d*cosh(d*x + c)^4 + 3*(3*a^7*b +
17*a^6*b^2 + 41*a^5*b^3 + 51*a^4*b^4 + 32*a^3*b^5 + 8*a^2*b^6)*d*cosh(d*x + c)^2 + (a^7*b + 5*a^6*b^2 + 9*a^5*
b^3 + 7*a^4*b^4 + 2*a^3*b^5)*d)*sinh(d*x + c)^2 + (a^7*b + 3*a^6*b^2 + 3*a^5*b^3 + a^4*b^4)*d + 8*((a^7*b + 3*
a^6*b^2 + 3*a^5*b^3 + a^4*b^4)*d*cosh(d*x + c)^7 + 3*(a^7*b + 5*a^6*b^2 + 9*a^5*b^3 + 7*a^4*b^4 + 2*a^3*b^5)*d
*cosh(d*x + c)^5 + (3*a^7*b + 17*a^6*b^2 + 41*a^5*b^3 + 51*a^4*b^4 + 32*a^3*b^5 + 8*a^2*b^6)*d*cosh(d*x + c)^3
 + (a^7*b + 5*a^6*b^2 + 9*a^5*b^3 + 7*a^4*b^4 + 2*a^3*b^5)*d*cosh(d*x + c))*sinh(d*x + c)), -1/8*(2*(5*a^4*b +
 21*a^3*b^2 + 24*a^2*b^3 + 8*a*b^4)*cosh(d*x + c)^6 + 12*(5*a^4*b + 21*a^3*b^2 + 24*a^2*b^3 + 8*a*b^4)*cosh(d*
x + c)*sinh(d*x + c)^5 + 2*(5*a^4*b + 21*a^3*b^2 + 24*a^2*b^3 + 8*a*b^4)*sinh(d*x + c)^6 + 10*a^4*b + 14*a^3*b
^2 + 4*a^2*b^3 + 2*(15*a^4*b + 61*a^3*b^2 + 102*a^2*b^3 + 72*a*b^4 + 16*b^5)*cosh(d*x + c)^4 + 2*(15*a^4*b + 6
1*a^3*b^2 + 102*a^2*b^3 + 72*a*b^4 + 16*b^5 + 1...

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\operatorname {sech}^{2}{\left (c + d x \right )}}{\left (a + b \operatorname {sech}^{2}{\left (c + d x \right )}\right )^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)**2/(a+b*sech(d*x+c)**2)**3,x)

[Out]

Integral(sech(c + d*x)**2/(a + b*sech(c + d*x)**2)**3, x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 282 vs. \(2 (100) = 200\).
time = 0.81, size = 282, normalized size = 2.61 \begin {gather*} \frac {\frac {3 \, \arctan \left (\frac {a e^{\left (2 \, d x + 2 \, c\right )} + a + 2 \, b}{2 \, \sqrt {-a b - b^{2}}}\right )}{{\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {-a b - b^{2}}} - \frac {2 \, {\left (5 \, a^{3} e^{\left (6 \, d x + 6 \, c\right )} + 16 \, a^{2} b e^{\left (6 \, d x + 6 \, c\right )} + 8 \, a b^{2} e^{\left (6 \, d x + 6 \, c\right )} + 15 \, a^{3} e^{\left (4 \, d x + 4 \, c\right )} + 46 \, a^{2} b e^{\left (4 \, d x + 4 \, c\right )} + 56 \, a b^{2} e^{\left (4 \, d x + 4 \, c\right )} + 16 \, b^{3} e^{\left (4 \, d x + 4 \, c\right )} + 15 \, a^{3} e^{\left (2 \, d x + 2 \, c\right )} + 32 \, a^{2} b e^{\left (2 \, d x + 2 \, c\right )} + 8 \, a b^{2} e^{\left (2 \, d x + 2 \, c\right )} + 5 \, a^{3} + 2 \, a^{2} b\right )}}{{\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} {\left (a e^{\left (4 \, d x + 4 \, c\right )} + 2 \, a e^{\left (2 \, d x + 2 \, c\right )} + 4 \, b e^{\left (2 \, d x + 2 \, c\right )} + a\right )}^{2}}}{8 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^2/(a+b*sech(d*x+c)^2)^3,x, algorithm="giac")

[Out]

1/8*(3*arctan(1/2*(a*e^(2*d*x + 2*c) + a + 2*b)/sqrt(-a*b - b^2))/((a^2 + 2*a*b + b^2)*sqrt(-a*b - b^2)) - 2*(
5*a^3*e^(6*d*x + 6*c) + 16*a^2*b*e^(6*d*x + 6*c) + 8*a*b^2*e^(6*d*x + 6*c) + 15*a^3*e^(4*d*x + 4*c) + 46*a^2*b
*e^(4*d*x + 4*c) + 56*a*b^2*e^(4*d*x + 4*c) + 16*b^3*e^(4*d*x + 4*c) + 15*a^3*e^(2*d*x + 2*c) + 32*a^2*b*e^(2*
d*x + 2*c) + 8*a*b^2*e^(2*d*x + 2*c) + 5*a^3 + 2*a^2*b)/((a^4 + 2*a^3*b + a^2*b^2)*(a*e^(4*d*x + 4*c) + 2*a*e^
(2*d*x + 2*c) + 4*b*e^(2*d*x + 2*c) + a)^2))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\mathrm {cosh}\left (c+d\,x\right )}^2\,{\left (a+\frac {b}{{\mathrm {cosh}\left (c+d\,x\right )}^2}\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cosh(c + d*x)^2*(a + b/cosh(c + d*x)^2)^3),x)

[Out]

int(1/(cosh(c + d*x)^2*(a + b/cosh(c + d*x)^2)^3), x)

________________________________________________________________________________________